Incomparable Copies of a Poset in the Boolean Lattice
نویسندگان
چکیده
Let Bn be the poset generated by the subsets of [n] with the inclusion as relation and let P be a nite poset. We want to embed P into Bn as many times as possible such that the subsets in di erent copies are incomparable. The maximum number of such embeddings is asymptotically determined for all nite posets P as 1 t(P ) ( n bn/2c ) , where t(P ) denotes the minimal size of the convex hull of a copy of P . We discuss both weak and strong (induced) embeddings.
منابع مشابه
Packing Posets in the Boolean Lattice
We are interested in maximizing the number of pairwise unrelated copies of a poset P in the family of all subsets of [n]. For instance, Sperner showed that when P is one element, ( n bn2 c ) is the maximum number of copies of P . Griggs, Stahl, and Trotter have shown that when P is a chain on k elements, 1 2k−1 ( n bn2 c ) is asymptotically the maximum number of copies of P . We prove that for ...
متن کاملGames of Chains and Cutsets in the Boolean Lattice II
B. Bájnok and S. Shahriari proved that in 2, the Boolean lattice of order n, the width (the maximum size of an antichain) of a non-trivial cutset (a collection of subsets that meets every maximal chain and does not contain ∅ or [n]) is at least n− 1. We prove that, for n ≥ 5, in the Boolean lattice of order n, given ⌈n2 ⌉− 1 disjoint long chains, we can enlarge the collection to a cutset of wid...
متن کاملBoolean Lattices: Ramsey Properties and Embeddings
A subposet Q′ of a poset Q is a copy of a poset P if there is a bijection f between elements of P and Q′ such that x ≤ y in P iff f(x) ≤ f(y) in Q′. For posets P, P ′, let the poset Ramsey number R(P, P ′) be the smallest N such that no matter how the elements of the Boolean lattice QN are colored red and blue, there is a copy of P with all red elements or a copy of P ′ with all blue elements. ...
متن کاملCharacterization of the factorial functions of Eulerian binomial and Sheffer posets
We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...
متن کاملClassification of the factorial functions of Eulerian binomial and Sheffer posets
We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 32 شماره
صفحات -
تاریخ انتشار 2015